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In the review examined the possibility of using LTCC-technology for obtaining hexaferrites as reaction 

additives glasses Bi2O3-B2O3-SiO2-ZnO (BBSZ) and BaCu (B2O5) (BCB) to reduce the sintering tempera-

ture. It is shown that compatibility between hexaferrites with the addition BBSZ, BCB and silver paste, 

which is a key requirement in the manufacturing process LTCC-components. Considered the possibility of 

co-sintering of ferrites and dielectric tape composites. It was established that for the realization of defect-

free LTCC-composite need to control the shrinkage of the two tapes. In this connection becomes an im-

portant concept of zero shrinkage and limiting sintering. 
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1. INTRODUCTION 
 

General technology of production LTCC-devices is 

as follows. Raw ceramics rolled, molded and cut into a 

fixed-size sheets. Further, selected the required num-

ber of sheets a given thickness with a required value of 

the dielectric constant.  

In the sheets break the required number of holes for 

interlayer conductive and heat-conducting passages, 

and performed additional mechanical processing 

sheets, for example, the edges specially shaped accord-

ing to the product design. Further, special holes are 

filled conductive composition, and to the surface is ap-

plied conductive pattern topology.  

Thereafter, it is doing assembly of the multilayer 

structure of the substrate with careful combining mul-

tilayer transitive apertures, and as a binder layer is 

used a crystallized glass. Then, to the upper and lower 

layers applied a protective coating, and the entire 

structure is subjected to heat treatment, which occurs 

as a result of its sintering.  

Thereafter, it is performing the mechanical pro-

cessing the outer layers of the structure (grinding), in 

which the protective coating is removed, and the sur-

face becomes flat. Next, the cleaned surface of the up-

per and lower layers applied conductive pattern and 

the resistive elements wherein for resistors of large and 

small resistances use different resistive ink with the 

corresponding resistivity.  

After the final firing of the outer layers is performed 

laser trimming resistors ratings and the substrate be-

comes completely prepared for surface mounting 

hinged components. 

With the growing demand for portable electronic 

devices require further miniaturization and weight 

reduction. Integration of induction coils, capacitors and 

resistors in one small monolithic chip provides better 

performance and saves space with a higher level of in-

tegration on a printed circuit. Multicompound multi-

layer co-fired materials from soft magnetic material 

with high magnetic permeability and a dielectric mate-

rial with a high dielectric constant at high frequencies, 

provide co-fired capacitor and inductor coil, and are one 

of the most interesting, but sophisticated approaches 

[1]. Mismatch compaction kinetics, chemical reactions 

and mismatch thermal expansion between the layers 

can generate undesirable defects such as delamination, 

crack, collapse and reduce performance secondary 

phase [2-4]. Thus, the development of low-temperature 

processes usually demonstrates significant changes in 

the properties of materials above 200 MHz because 

Snoek limit [5]. Maximum factor quality-frequency 

(QxE) in chips inductor of a nonmagnetic material 

above 500 MHz. However, the quality factor for fre-

quencies of about 200-300 MHz are significantly lower 

than at higher frequencies [6]. Since the chip inductor 

was prepared by winding a wire around a core of non-

magnetic material, it is necessary to have a greater 

number of turns of the coil winding to obtain the de-

sired inductance, thereby limiting miniaturization. 

Thus, it is desirable to develop a low-temperature 

burned (below 950 °C) magnetic material having a 

higher quality factor than nonmagnetic materials at 

200-300 MHz for use in the manufacture multilayer 

high frequency chip inductor. Ferrites with a hexagonal 

structure show higher dispersion of frequencies than 

NiCuZn ferrites used in microwave applications [7, 8]. 

Among these ferrites BaFe12O19 and SrFe12O19 –  

M-type ferrites having good magnetic properties such 

as permeability and quality factor above 200 MHz [9]. 

 

2. ADDITIVES TO REDUCE THE SINTERING 

TEMPERATURE 
 

Development of LTCC-magnetic has trend to use a 

small amount of additives and glass-ceramics systems 

including softening glasses and magnetic ceramics with 

a high melting point. Typical additive for low tempera-

ture sintered hexaferrites prepared by a low value mix-

ing with the oxide – Bi2O3. It is also possible to add 

lithium borosilicate glass or B2O3-Sb2O3. The main 

problem with low temperature fired polycrystalline 
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magnetic phases like BaFe12O19 – high porosity. Due to 

the high content of nonmagnetic phases ( 10 vol. %), 

such as glass or a pores phase permeability sharply 

reduced. Reaction glasses Bi2O3-B2O3-SiO2-ZnO (BBSZ) 

partially solve this problem, they used to lower the sin-

tering temperature hexaferrites, but magnetic proper-

ties are not satisfactory. Thus, there is an additional 

necessity to reduce the sintering temperature and op-

timize magnetic properties of barium ferrite to satisfy 

requirements of LTCC multilayer devices. 

Glass BaCu(B2O5) (BCB) may be selected as an ad-

ditive that reduces sintering. It melts and acts as a flux 

at 850 °C. The coercive force can be reduced preserving 

relatively high magnetization saturation of barium 

ferrite, if Fe (III) ions simultaneously displace divalent 

and tetravalent cations. 

In the work [10] was shown that the first traces 

BaFe12O19 observed at temperature about 1000 °C, but 

clean hexaferrite phase obtained at 1200 °C (Fig. 1 

[10]). Thus, this temperature can be used to calcine the 

mixed oxide precursor. 
 

 
 

Fig. 1. – High temperature X-ray thermally processed mixture 

of BaCO3 and Fe2O3 

 

Behavior shrinkage Ba(Co,Ti)xFe12 – 2xO19 (x  1,2) 

magnetic ceramics samples with content and without 

content BBSZ-glasses during thermal treatment are 

shown in the work [1]. The relationship between linear 

shrinkage levels of shrinkage and heat treatment tem-

perature are shown in Fig. 2 [1]. Magnetic ceramics 

samples with the addition of BBSZ-glasses had lower 

starting temperature shrinkage indicates the initial 

sintering stage than the sample without glasses con-

tent. Sample without the addition of glasses started to 

shrink at a temperature of 1250 °C. Sample 4 wt. %. 

BBSZ-glasses began to shrink at a temperature of 

900 °C. By increasing the glasses content, starting 

temperature of shrinkage is reduced further. When the 

samples had a content BBSZ-glass is higher than 

12 wt. % starting temperature of shrinkage was lower 

than 850 °C. The temperature of the maximum level of 

shrinkage, as the estimated temperature sintering of 

powders was 970, 950, 930 and 925 °C for samples 4, 8, 

12 and 16 wt. % content of BBSZ-glass, respectively. 

The highest relative density was achieved with 12 

wt. % addition of glass. After sintering at 1050 °C and 

950 °C it was 97 % and higher 94 %, respectively. Fur-

ther increase in the content of glass is mainly a relative 

density decreases. This may be due to the high content 

of the liquid phase and the formation of closed pores. 
 

 
 

Fig. 2 – Linear shrinkage and shrinkage level Ba(Co, Ti)xFe12 –

 2xO19 magnetic ceramics samples during thermal treatment 
 

Detailed values shrinkage and porosity depending 

on the number of BBSZ- glass for composition 

BaFe12O19 given in Table 1 [10]. 
 

Table 1 – Effect of amount of reactive glass on open porosity 

and shrinkage 

 

 
 

These results indicate that the addition BBSZ-glass 

may contribute significantly to compacted magnetic 

ceramics. 

Using 1-4 wt. % BCB additives hexaferrite composi-

tion Ba(CoTi)0.9Fe11O19 in the work [11, 12], it was 

found the optimum content of additive for compacting 

the ferrite particle The bulk densities of 

Ba(CoTi)0.9Fe11O19 with the addition of 1-4 wt. % BCB 

were subjected co-fired at various temperatures, as 

shown in Figure 3 [11]. It can be seen that the maxi-

mum density is increased from 4.6 g/cm3 (86 % of theo-

retical density) to 4.9 g/cm3 (94 % of theoretical density) 

at BSB varying from 1 to 4 wt. %. Obviously, the max-

imum density increased with increasing content of 

BCB, and reaches a maximum when the sample 3 wt. 

% BCB sintered at 900 °C. It is considered that during 

sintering of ceramics BCB form a liquid phase at 

850 °C and act as a flux [13]. The liquid phase reacts 

with the barium ferrite, contributing to the promotion 

of mass and diffusion in the ferrite, thereby facilitating 

compaction [14]. On the other hand, it can also be de-

termined that the density does not always increase 

with increasing temperature. It is considered that the 

liquid phase is vaporized and passes some possible re-
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actions at higher temperature [14]. These results show 

that the addition of 3 wt. % BSB sufficient to lower the 

sintering temperature of the barium ferrite to 900 °C. 
 

 
 

Fig. 3 – Bulk densities Ba(CoTi)0.9Fe11O19 with the addition of 

1-4 wt. % BSB sintered at the different temperatures 
 

Dosage glass reaction plays an important role in the 

ferrite crystallization. In the mechanism of formation of 

barium ferrite are the two following reactions [15]: 
 

 BaCO3 + Fe2O3  BaFe2O4 + CO2  

 

 BaFe2O4 + 5Fe2O3  BaFe12O19  

 

In other studies [16, 17], intermediate compounds 

such as Fe2O3 and BaFe2O4 often detected. For exam-

ple, Young et al. found Fe2O3 in the manufacture of 

pure barium ferrite [18] and Liu et al. reported the ex-

cess barium by forming BaFe2O4 [19]. In the results of 

the work [12] was not BaFe2O4. Thus, it can be con-

cluded that the BCB is completely transformed into the 

liquid phase. Furthermore, clearly it observed that α-

Fe2O3 and BaFe12O19 appear simultaneously when BCB 

content below 3 wt. %. However, Fe2O3 phase disap-

peared and single phase barium ferrite M-type was 

formed at the enlarged BCB content to 3 wt. %. It is 

considered that the formation of pure phase BaFe12O19 

accelerated by the BCB liquid phase. On the other 

hand, although BCB was added to BaM, no peak of 

BCB second phase was not detected in the radiograph. 

This reason is that BCB exist as a liquid phase and an 

amorphous phase retained upon cooling [13]. 

 

3. COMPATIBILITY HEXAFERRITES WITH 

SILVER ELECTRODES 
 

Silver (Ag), is generally used as the internal metal 

electrode in LTCC-multilayer devices due to its low 

losses and low electrical resistance at high frequencies, 

but the melting point of Ag  961 °C, i.e. is small. 

Therefore, for the manufacture LTCC-multilayer devic-

es, it is important to use ferrites having a sintering 

temperature below 961 °C to prevent diffusion of Ag 

and shrinkage [10, 20]. 

Thus during manufacture LTCC-components neces-

sary compatibility between BaFe12O19 with the additive 

BBSZ and silver paste. Should not be diffusion and no 

leakages between the paste and composite. The results 

of work [10] and Figure 4 show the SEM-pictures be-

tween the glass-ceramics composite and silver paste. 

By analogy with the image shows the EDX-lines of the 

spectrum scanning of the same interface. Leakages 

between glass-ferrite composite and the paste after 

sintering is not observed. EDX spectra show a sharp 

transition between the Ag and paste on the one hand, 

and Ba and Fe tapes on the other hand. This means 

that there is no diffusion between the paste and tape. 

Signal Si, Bi and Zn, coming from BBSZ-glass, added in 

very small quantities and are not essential for interpre-

tation. 
 

 
 

Fig. 4 – Compatibility LTCC- glass-ceramics composite and 

Ag-paste 
 

However, due to different kinetics of sintering be-

tween the ferrite and silver in the samples often ob-

served cracks, delamination and collapse. However, 

these defects were not found in the work [11] by using 

Ba(Co, Ti)xFe12 – 2xO19 containing BCB. Silver paste 

distributed in the central region of the conductor, does 

not diffuse into the ferritic region, as shown in figure 5. 

This means that the barium ferrite good co-fired with 

silver paste. 
 

 
 

Fig. 5 – SEM-image of barium ferrite with the silver paste, 

together sintered at 900 °C 
 

At the same additive BCB, but for composition 

BaFe12O19 at co-sintering with silver in the work [12] 

shown positive results. Figure 6 shows that the ferrite 

layer and layer of the electrode Ag - compatible and 

have almost no cracks, delamination and convexity at 

the boundary between them. 
 

 
 

Fig. 6 – SEM result of 3 wt. % ceramics additives BaCu(B2O5) 

to BaM with Ag electrode co-sintered at 900 °C 
 

Thus, all presented results of studies various com-
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positions hexaferrites containing various additives, to 

reduce the sintering temperature, give a positive result 

in co-sintering hexaferrites with silver. It is proved that 

Ag does not diffuse into the ferritic region, and extends 

in a central region of the conductor. 

 

4. CO-SINTERING OF FERRITE AND DIELEC-

TRIC TAPES COMPOSITES 
 

The potential of the miniaturization devices of 

LTCC will dramatically improve if it can be integrate 

the inductor directly into the multi-layer structure, co-

sintering ferrite tapes in combination with dielectric 

tapes. In [21] described a commercial dielectric LTCC-

tape and a newly developed ferrite tape based on 

BaFe12O19. For the production of composite structures 

of these two types tapes according to LTCC technology, 

ferrite tape should be compacted (sintered) at the tem-

perature about 900 °C. Characteristic tapes includes 

the study of the behavior of the structure of tapes and 

shrink by measuring the density, thermogravimetry, 

thermomechanical analysis, optical dilatometry and 

microstructure research. By combining the various 

tapes can be generated behavior of bounding sintering. 

The resulting defects can be associated with stressful 

events during the cycles of sintering and cooling. 

Integration magnetic properties into existing dielec-

tric LTCC structure would have a significant impact on 

the miniaturization and the possibility of using LTCC 

devices in the field of communication and automotive 

technology. Converters, antennas and circulators – only 

some of many possible passive devices that may be re-

alized by using ferrite tape. The circulator is composed 

of three separate devices and allows the RF waves oc-

cur between any two adjacent ports, which are limited 

only in one direction. It contains three transition lines, 

which are located between two layers of ferrite materi-

al. On the other hand ferrite – a non-ferromagnetic 

substrate, then magnet and non-ferromagnetic pole 

piece, which protects the device from external magnetic 

fields. Such circulators may find application in UMTS 

mobile phones. 

In the work [21] was used hexaferrite M-type 

BaFe12O19, which has a big advantage – a constant 

permeability over a wide frequency range. Permeability 

values spinel ferrites above, but rapidly decrease in the 

frequency range near MHz. To integrate the ferrite 

tape should be fired together with the dielectric tape. 

To implement defect-free composite LTCC necessary to 

control the shrinkage of the two tapes. Therefore, it is 

an important concept of zero-shrinkage and sintering 

restricting [22, 23]. One concept is based on limiting 

the temporal layers that are laminated on both sides of 

the multilayer structure. The frictional force between 

the LTCC layer and the non-sintering temporary layer 

suppresses shrinkage in the plane. In the work [24] the 

shrinkage in the plane of the ferrite tape was reduced 

using a dielectric tape which is compacted in the other 

temperature range as opposed to the ferrite tape. The 

dielectric tape should be compacted at low tempera-

tures when it is limited to non-caking ferrite tape. At 

higher temperatures, the ferrite tape is compacted, but 

the shrinkage is already hampered by the dense dielec-

tric tape. Thus, sintering is implemented self-limiting 

because each tape is limiting layer to another. 

Cracks, debonding, and other defects observed in 

multilayer composites due mismatch stresses to differ-

ent sintering stages [25, 26]. They can be caused by 

different rates compaction of individual layers during 

sintering or mismatched coefficients of thermal expan-

sion during cooling. Thus, a layer with a high coeffi-

cient of thermal expansion is under stretching stress 

and is most susceptible to the formation of cracks. 

To reduce the exposure time requires a temperature 

higher than 900 °C, it is not valid for co-sintering with 

metal pastes. Using the sintering temperature of 

950 °C for 3 h instead of 900 °C for 5 h, the porosity 

decreases from 6,0 to 1,7 vol. % [21]. From these re-

sults, it is suggested that the high concentration of the 

binder is not distributed uniformly over the height of 

the tape leads to the bulge during the binder burnout. 

Since intervals sintering dielectric and ferrite films 

overlap between 760 and 840 °C, one can not expect 

absolute zero shrinkage composite. However, restrict-

ing the sintering was clear achieved (Fig. 7) [21]. The 

limited resolution of the optical dilatometer 80 m/pixel 

(equivalent to ± 0,3 %, depending on the sample size), 

and low shrinkage values lead to increase scattering 

data (Fig. 7). In the range of 700-760 °C compaction 

dielectric tape suppressed not sintered ferrite tape. 

Various speed of compaction may cause low shrinkage 

value of 1.5 % between 760 and 840 °C, although both 

single tape compacted within this temperature range. 

At temperatures above 840 °C ferrite shrinkage is con-

strained not sintered dielectric tape. When the holding 

time of 5 h at 900 °C shrinkage observed mainly in 

thickness. The total shrinkage in the plane was 3.25 % 

for the casting direction, of 2.97 % for the transverse 

direction, and 33.1 % in the Z axis direction, due to the 

shrinkage inhibited in the plane. 
 

 
 

Fig. 7 – Limited shrinkage in the plane symmetrical dielectric 

and ferrite composite 
 

Various speed of compaction generate mismatch 

stress sintering; tensile stress in the plane decreases 

driving force of compaction and is one of the reasons for 

the origin of the defect. Typical defects observed are 

shown in Figure 8. 

The tendency in modern high-frequency (HF) appli-

cations, consists in reducing the size, increasing the 

packing density and enhance functionality requires 

substrates to enable embedded passive functions [27]. 

Along with the high-frequency laminates [28, 29] and 
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passive integration in the high-resistivity silicon [30-

34], a low-temperature co-fired ceramics (LTCC) is an 

established technology for the realization of highly in-

tegrated modules for mobile devices [35, 36]. 
 

 
 

Fig. 8 – Defects in the sintered composite: (a) cavitation in 

DuPont layer, (b) divisive crack and (c) channel crack in ferrite 

layer 
 

New ceramic materials based hexaferrites with a 

low temperature firing must be compatible firing prop-

erties, dielectric, magnetic and thermomechanical 

properties of a commercial glass-ceramic LTCC tapes, 

and the metal paste order to be made mechanically 

robust multi-layer structure with the required electri-

cal characteristics. Target calcining temperature was in 

the range of 850-940 °C as the most suitable range for 

commercial LTCC metal pastes and tapes. These low 

temperature firing to be achieved while maintaining 

good dielectric and magnetic properties of the ceramic 

functional layers. 

Behavior of compaction ceramics depending of addi-

tives on sintering obtained in [27] is compared with a 

commercial tape (Fig. 9). The curves show high com-

paction parameters (density  95 % of theoretical) at 

sintering temperatures of 900-940 °C. Maximum com-

paction dielectric ceramics optimized approximately 

200 °C higher than for the commercial LTCC tape in 

order to achieve near zero shrinkage. 

During the firing of LTCC-tape shrink significantly 

– by more than 10 %. Shrinkage can cause significant 

and unmanageable change level of arching which must 

be compatible with some arching contact pads of  

 
 

Fig. 9 – The indicators of compaction dielectric (Ba,Ca) (Zr, 

Ti)O3 ceramics with high k with various additives and com-

mercial Dupont 951AT tape depending on temperature 
 

semiconductor integrated circuits to which they are 

connected at a later stage. The most common sintering 

technology restricting lateral shrinkage (along the X- 

and Y-direction) without pressure and, therefore, cost-

effective is lamination upper and rear tapes do not suf-

fer from shrinkage and densification during sintering. 

After sintering these limiting layers are to be removed. 

For additional post-firing must be provided external 

connections. The technique developed by the authors 

[27], allows in a single step process to conduct a co-

firing material with a high dielectric constant with 

commercial LTCC glass ceramic with a virtually zero 

shrinkage ( 1 %) in the X- and Y-axis. This effect was 

achieved by adjusting the characteristics of the com-

paction dielectric ceramics. It was compacted below 

melting point Ag- and Cu-electrode material, but above 

compaction temperature LTCC tape. 

To achieve zero shrinkage and cracks LTCC compo-

sites further research is needed. 

 

5. CONCLUSION 
 

In the review examined the possibility of using 

LTCC-technology for obtaining hexaferrites as 

additives reaction glasses Bi2O3-B2O3-SiO2-ZnO (BBSZ) 

and BaCu(B2O5) (BCB) to reduce the sintering 

temperature.  

It is shown that compatibility between hexaferrites 

with the addition BBSZ, BCB and silver paste, which is 

a key requirement in the manufacturing process LTCC-

components. 

Considered the possibility of co-sintering of ferrite 

and dielectric tape composites. It was established that 

for the realization of a defect-free LTCC- composite 

shrinkage ferrite and dielectric tape composites should 

tend to zero. 

Work is executed in NUST "MISIS" with the financial 

support of the Ministry of Education of the Russian 

Federation within the grant agreement № 14.575.21.0030 

on 27 June 2014 (RFMEFI57514X0030). 
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